<
Future Technologies Group ceeeeer] i

m‘

NetLogger: Distributed System
Monitoring and Analysis

Brian L. Tierney

Ernest Orlando Lawrence Berkeley National Laboratory

NetLogger

Outline eceeny] :

BERKELEY LAB

Overview

— What is NetLogger?

— What is NetLogger good for?

— What is NetLogger not good for?
NetLogger Components

— message format

— Instrumentation library

— system monitoring tools

— visualization tools

Case Studies

— Radiance luminosity application
— Parallel remote data server (DPSS)
Current Work

Current Issues

Netl_ogger |

Overview cecoeed) :

BERKELEY LAB

e The Problem

— When building distributed systems, we often
observe unexpectedly low performance
* the reasons for which are usually not obvious

— The bottlenecks can be in any of the following
components:
» the applications
* the operating systems

 the disks or network adapters on either the sending or
receiving host

* the network switches and routers, and so on

e The Solution:

* Highly instrumented systems with precision timing
iInformation and analysis tools

NetLogger |

Bottleneck Analysis ceece?]

BERKELEY LAaB

* Distributed system users and developers often
assume the problem is network congestion

— This is often not true

* In our experience tuning distributed applications,
performance problems are due to:

— network problems: 40%
— host problems: 20%

— application design problems/bugs: 40%
* 50% client , 50% server

 Thereforeitis equally important to instrument the
applications

NetLogger |

NetLogger Toolkit cecoeed) :

« We have developed the NetLogger Toolkit

— A set of tools which make it easy for distributed
applications to log interesting events at every
critical point

— NetLogger also includes tools for host and
network monitoring

« The approach is novel in that it combines network,
host, and application-level monitoring to provide a
complete view of the entire system

NetLogger

Why “NetLogger”? cecoeed) ’\‘

« The name “NetLogger” is somewhat misleading

— Should really be called: “Distributed
Application, Host, and Network Logger”

* “NetLogger” was a catchy name that stuck

| Netl_ogger |

When to use NetLogger cocoond] :

« When you want to:

— do performance/bottleneck analysis on
distributed applications

— determine which hardware components to
upgrade to alleviate bottlenecks

— do real-time or post-mortem analysis of
applications

— correlate application performance with system
iInformation (ie: TCP retransmission's)

 works best with applications where you can follow
a specific item (data block, message, object)
through the system

NetLogger

When NOT to use NetLogger | sreeee

BERKELEY LAaB

/\
m‘

 Analyzing massively parallel programs (e.g.: MPI)

— Current visualization tools don’t scale beyond
tracking about 20 types of events at a time

 Analyzing many very short events

— system will become overwhelmed if too many
events

— we typically use NetLogger to monitor events
that take > .5 ms

— e.g: probably don’t want to use to instrument
the UNIX kernel

NetLogger |

NetLogger Components rrecee

/\
m‘

 NetLogger Toolkit contains the following
components:

— NetLogger message format

— NetLogger client library

— NetLogger visualization tools

— NetLogger host/network monitoring tools

* Additional critical component for distributed
applications:

— NTP (Network Time Protocol) is required to
synchronize the clocks of all systems

NetLogger

NetLogger Message Format | srerey

BERKELEY LAaB

/\
m‘

« We are using the IETF draft standard Universal Logger
Message (ULM) format (http://www.ietf.org/internet-
drafts/draft-abela-ulm-05.txt):

— alist of “field=value” pairs
— required fields: DATE, HOST, PROG, and LVL

 LVL is the severity level (Emergency, Alert, Error, Usage,
etc.)

— followed by optional user defined fields

 NetLogger adds these required fields:

* NL.EVNT, a unique identifier for the event being logged

—e.g.: SERVER_IN, VMSTAT _USER_TIME,
NETSTAT RETRANSSEG

| NetLogger |

NetLogger Message Format | rreee?)

BERKELEY LAB

« Sample NetLogger ULM event:

DATE=19980430133038. 55784 HOST=f o0o. | bl . gov
PROG=t est prog LVL=Usage NL. EVNT=SEND DATA
SEND. SZ=49332

— This says program named testprog on host
foo.lbl.gov performed event named SEND DATA,
size = 49332 bytes, at the date/time given

 User-defined data elements (any number) are used to
store information about the logged event - for example:

* NL.EVNT=SEND_DATA SEND.SZ=49332
—the number of bytes of data sent

* NL.EVNT=NETSTAT_RETRANSSEGS NS.RTS=2
—the number of TCP retransmits since the previous event

NetLogger

Other Formats ceecer?]

« We’d like to convince everyone to use the
ULM/NetLogger format for logging

— This way we can all share log file management
and visualization tools

 Probably not realistic

— Working on filters to convert the following
to/from NetLogger format

 Pablo, NWS. Surveyor?, others?

— Also working on a binary representation for
more efficient use of network and disk

e If ULM is not adequate, whose format is better?

NetLogger

NetLogger API cocoond]

BERKELEY LAaB

/\
m‘

 NetLogger Toolkit includes application libraries for
generating NetLogger messages
— Can send log messages to:
* file
* host/port (netlogd)
e syslogd
* memory, then one of the above

 C, C++, Java, Perl, and Python APIs are currently
supported

| NetLogger |

NetLogger API ereeed]
-

 Only 6 simple calls:

— NetLoggerOpen()
e create NetLogger handle, specify logging destination

— NetLoggerWrite()
e get timestamp, build NetLogger message, send to destination

— NetLoggerGTWrite()
* must pass in results of Unix gettimeofday() call

— NetLoggerFlush()
« flush any buffered message to destination

— NetLoggerSetLevel()
« set ULM severity level

— NetLoggerClose()
« destroy NetLogger handle

NetLogger |

Sample NetLogger Use ceecerd]

| p = Net Logger Open(net hod, prognanme, NULL,
host nane, NL_ PORT);

whil e (!done)

{
Net LoggerWite(l p, "EVENT START",
"TEST. SI ZE=%", si ze);
[* performthe task to be nonitored */
done = do_sonet hi ng(data, size),;
Net LoggerWite(l p, "EVENT_END');
}

Net Logger Cl ose(| p);

Netl_ogger |

NetLogger Host/Network Tools | sreeee

BERKELEY LAaB

/\
m‘

 Wrapped UNIX network and OS monitoring tools to log
“Interesting” events using the same log format

— netstat (TCP retransmissions, etc.)
— vmstat (system load, paging, etc.)
— lostat (disk activity)

— ping

« These tools have been wrapped with Perl or Java
programs which:

— parse the output of the system utility
— build NetLogger messages containing the results

NetLogger

NetLogger Network Tools cerce]

BERKELEY LAB

 NetLogger tool for SNMP queries
— Usage: nl_snmpget hostname object [port]

« Examples:
— host monitoring
* nl _snnpget uni Xx_host sysNane
— Returns: system.sysName.0 = wakko.lbl.gov
— router monitoring
* nl _snnpget routernane iplnDelivers 3
—Returns: tcp.tcplnErrs.3 = 4000
— ATM switch monitoring
* nl _snnpget sw tchnane sonet Li neFEBES
* nl _snnpget sw tchnane portTransm ttedCells

NetLogger

NetLogger Events cocoond] :

 Logged events are correlated with system
behavior to characterize the performance of the
system during actual operation

— facilitates bottleneck identification

e Using “life-lines” to visualize the data flow is the
key to easy interpretation of the results.

 We believe this type of monitoring is a critical
component to building reliable high performance
data intensive systems

| NetLogger |

Event

NetLogger Event “Life Lines”

rreereer

End Processing / /
Begin Processing I J

End Read

Begin Read

Request data

time

NetLogger

/\
m‘

Event Id cerre) ‘:n‘

BERKELEY LAB

* In order to associate a group of events into a
“lifeline”, you must assign an event ID to each
NetLogger event

« Sample Event Ids
— file name
— block ID
— frame ID
— user name
— host name
— etc.

| NetLogger I

Sample NetLogger Use

Frrreeeer ‘m

BERKELEY LAB

| p = Net Logger Open(net hod, prognane, NULL, hostnanme, NL_PORT);

f or

}

(1=0; i< numblocks; i++) {

Net LoggerWite(lp, “START_READ’,

“BLOCK | D=% BLOCK Sl ZE=%", 1, size);

read bl ock(1);
Net LoggerWite(l p, “END READ’,

“BLOCK | D=% BLOCK_SI ZE=%", i, size);

Net LoggerWite(lp, “START_PROCESS’,

“BLOCK | D=% BLOCK Sl ZE=%", i, size);

process_bl ock(i);
Net LoggerWite(lp, “END_PROCESS’,

“BLOCK | D=% BLOCK_ SI ZE=%", i, size);

Net LoggerWite(lp, “START_SEND’,

“BLOCK | D=% BLOCK_ SI ZE=%", i, size);

send bl ock(i);
Net LoggerWite(lp, “END SEND’,

“BLOCK | D=% BLOCK Sl ZE=%", i, size);

Net Logger Cl ose(l p);

NetLogger |

NetLogger Visualization Tools | eeeeeryy :

BERKELEY LAaB

 Exploratory, interactive analysis of the log data has
proven to be the most important means of identifying
problems

— this is provided by nlv (NetLogger Visualization)

* nlv functionality:

— can display several types of NetLogger events at
once

— user configurable: which events to plot, and the
type of plot to draw (lifeline, load-line, or point)

— play, pause, rewind, slow motion, zoom in/out, and
SO on
— nlv can be run post-mortem or in real-time

e real-time mode done by reading the output of netlogd as it
IS being written

NetLogger

NLV Graph Types ceree)

BERKELEY LAaB

/\
m‘

e nlv supports graphing of “points”, “load-lines”, and
“lifelines”

event | i S % point

avent MW\/\ load-line
event E / /

.
event D .{ J' / lifeline

event E / / /
ever / | / /

event A&

NetLogger

A\
frrereeoer ‘m

— HetLogyer IHEE
File Edit View Options Help
MetLogoer Wisualization Felenn Bar
FILE_RELEASED — Event keywords
FILE_BFETEIEVED —
FILE_PUSHED — Graph
FILE_IN_CACHE —
STAGE_FINISHED — Legend
CRACHING_BEQUEST — Window size
PFIF_PEHDING — “ Bz windowr
| | | !
0 = 2 2 4 5I Back 1 window
ume(s ” FlayPanse
Servers: _ B _ECCeoaet—cednTg B -r s pending Borward 1 window
Window (s} Max (s « MU W (5] Seesd |
i T s— e
T | L == |
|| Goto end
0.0 Zoom depth=0

Statu=s: Pau=ed

Avg. data density Indexer Iake window = zoom

Status msg ou are here g ary line

| Netl_ogger

NLV Zoom Feature ‘.’.\.

BERKELEY LAB

_.i HetLogger | ; | 4 | _

File Edit View Options Z00H BOX Help

MetLogger WVisualization

STRGE_FIHISHED — |-

CACHINE BEQUEST ||}

PFTP_PEHDING — | ™

time(s)

servors: [[NNMNCICRRGRIONINN ~ ~ Sossasfoedad F pftppending
Mindow (=} Max €=3 “ |>;||| » | r“'ﬂl 5!;@%%

1362,6 1362.6

I —t [Z00H STACK IS

i S \

Status=: Paused

| NetLogger

NLV with lifeline, load-line, and “~ A

rreerrererer][]

oint events RN}

=] NetLogyer X
File Data Options Help
MetLogger Visualization

TV_TILE_OUT_TEXCACHE —

TV_TILE_IN_TEXCACHE —

TV_TILE_BERD]

APF_EECEIVE —|

1S5 _START _WRITE —

1

1S5_END_READ —

1S8_START BERD |

1S5 _SERV_IH —|

155_MASTER_OUT —

1S8_MASTEER_IN —|

APT_SEWT —|
TV_TILE_REQ —

HETSTAT_FETRAHSSEGS —| 3 EL - - e - >

VMSTAT USEE_TIME —|

VMSTAT_S¥S_TIME — |- —_—

T T T T T
7018000 7020000 7022000 7024000 7026000
time(ms)

Servers: i _ al blackstone_sprintcorp_com_

Status: Paused I Analysis pi/li| Time Window (ms)
10000

@[@ _| Auto—speed |
Speed G o
Q 1.00 P | “ | » | - | 7017053

NetLogger

Example NLV Configuration | reeeey :

BERKELEY LAB

display server data as a “lifeline”
set +SERVER READ
type |ine

lifeline constructed from nessages fromthe sane client
and server

id [CLIENT_HOST DPSS. SERV]

nmessages wth the sane DPSS. SERV get the sane col or
gr oup DPSS. SERV

[+APP_SENT +DPSS SERV_| N +DPSS START READ
+DPSS_END READ +DPSS START WRI TE +APP_RECE! VE]

| Netl_ogger |

Network Time Protocol coreend]

BERKELEY LAaB

 For NetLogger timestamps to be meaningful, all
systems clocks must be synchronized.

— NTP is used to synchronize time of all hosts In
the system.

—NTP is from Dave Mills, U. of Delaware
(http://lwww.eecis.udel.edu/~ntp/)

— Must have NTP running on one or more primary
servers, and on a number of local-net hosts,
acting as secondary time servers

— typically get clock synchronized to within 1
millisecond of each other

NetLogger |

How to Instrument Your —

rreereer

/\
m‘

BERKELEY LAaB

AEEHcaﬁon

 You'll probably want to add a NetLogger event to the
following places in your distributed application:

— before and after all disk 1/O
— before and after all network I/O
— entering and leaving each distributed component

— before and after any significant computation
e e.g.. an FFT operation

— before and after any significant graphics call
e e.g.: certain CPU intensive OpenGL calls

 This is usually an iterative process

— add more NetLogger events as you zero in on the
bottleneck

NetLogger

Example 1: Parallel Visualization | —~ .,

f(reeeee ‘ﬂ

Application

 Radiance is a suite of programs for the analysis
and visualization of lighting in design.

— Input includes the scene geometry, materials, luminance,
time, date, and sky conditions

 Radiance has been adapted at LBNL to run on
multiple UNIX workstations

— The image is broken into many small pieces, and
Illumination calculations are performed for each piece
Independently

 Used NetLogger to measure:
— overall system throughput,
— latency for each stage of getting data, processing it, and
writing it
— patterns of latency which reflect resource contention and
other interaction delays

| NetLogger |

Radiance Instrumentation Points | reeree ;

BERKELEY LAB

Pl

Client

>

Master
[

+ R

4 * N x \ % % N\

Worker: Worker: Worker:
Proj;gtion Projerc\tion Projefc\tion
\ Z \ Z \ <
—— —%—— | —&%—
Worker: Ray Worker: Ray Worker: Ray
Tracer Tracer Tracer

- ! J _ I J - I J

* = monitoring point

NetLogger

NetLogger Radiance Results:

Before Tuning

MetLogger Yisualization

—~

A
(reeeee

||||
_

5 _AFTER. WRITE —
5_BEFORE_WRITE —|
S_AFTER. DTRACE —|

5 _BEFOPE_ETEACE —|
S _AFTEER. PROJECT —|

S _EEFORE_PROJEC —|

5 BEFORE_BERD —

C_EHI —

C_BEFORE_WRITE —

oo //ﬂ

| |
[6.5

time(s)

Servers: o i o

NetLogger

NetLogger Radiance Results: f"\l

r

After Tunin

Metlogger Wisualization

5_AFTER._ WRITE —|
5_BEFOBE_WRITE —|
5_AFTER._ETBACE —|
5_BEFORE_BTBACE —|
5_AFTER_PROJECT
5_BEFORE_PROJEC
5_AFTER_FEAD —

5_BEFORE_BERD — / T

C_EHD —

C_BEFORE_WRITE —

[I [
& 6.5 7

time(s)

SErVers: d i o

NetLogger

Example 2. Parallel Data Block | —~ .

rreereer

Server

BERKELEY LAaB

 The Distributed Parallel Storage Server (DPSS)

— provides high-speed parallel access to remote
data

— Unique features of the DPSS:

 On a high-speed network, can actually access remote
data faster that from a local disk

—57 MB/sec vs 10 MB/sec

 NetLogger was used for performance tuning and
debugging of the DPSS

Netl_ogger |

DPSS Cache Architecture ceceeet] i

data blocks

. Parallel
data blocks > Ei
DPSS Server

\
: 8 aralle
—"

DPSS Server

N

. o
— = Parallel

Disks
DPSS Server

Client Apylication

Logical Block data blocks

Requests

DPSS Master

* |ogical to physical
block lookup

e access control

* load balancing

Requests

Netl_ogger |

DPSS Instrumentation ceceend] :

BERKELEY LAB

from other DPSS

servers
<
O /e
A 5% A
Client @)
Application A DpSS Master [
to other
* 7 clients
Y s
Block DPSS Data Server Block
Request Writer
Thread
s A
' -------__-_---------_-,-—’
Shared Memory Cachg
% @' Disk Disk
ep Read - Read Read Read
Thread ﬁb Thread Thread Thread
A\
* = monitoring point % % % %
Disk Disk Disk Disk

NetLogger

NetLogger Results for the DPSS ceceerty
o7

F: time for 20 blocks to get from one server [/cul;'rgnz SErvers are mora than
wiitet to the application reader twice this rate)

i_! total: 204 ms, avg 10.2 ms '
TCP_retrans . 32.5 Mhb/sec -

app_receive

nel transit
start write
wrile gHete
end_read
‘E =
.E, di‘sk F‘Eﬂd | & cache hits
I (zeto read
Eﬂ start read i tim)
B A
fract
Fread guene | | !
| 1
S | :
SErver_m | B: typical ['
. L . . disk read: I ¥
net transit : o B: fast disk Dms | .
10 tead: 1
master _out Ll 3 ms o o .
| : ! '
T ; C: 20 block average time to write | .
L & XIHIE <l hlocks to netwrork: I :
master_in | 86 S ! v fourrent
. 'l D: 20 block average time spent in | length of the . valugis “ssdlog” —
net transit X [— read queue: 5 ms I I “pipeline” (73 60 ms) . about 30ms) G2 lng” - - -
1 1 =k -y
app_send |:|||||||||||||i|| LN L N N N Y B L B B B
2000 2200
[E: time to read 20 blocks from three disks I
|-l— total:123 ms, avg 6.15 ms -
, g MBy/sec (63.7 Mbfses) . Time (ms)

| NetLogger |

NetLogger Results for the DPSS
over a WAN

TCP retrans

app receive

start write

end read |
start read |
server in
master out

master in |

app send

BERKELEY LAB)

A
.:;*}l ‘m

“tioe.nettep etrans log”™ ——— “foc.serv_flushlog” e
“ade net top retrans log™ —+— “edcgerv_flushlog™ .
“ugwestnet teprptranslog” —e— “usbrestserv flushlog® o

“tvlog wswest” ———

“tvlogede™ _,

“tvlog.ioe” —=—

3,000 4,000

tme (ms)

| NetLogger

—~

. _ .
NLV of DPSS with a HENP client

HMetLogger
File Data Options Help

MetLogger Visualization

AMI_PAMIHVOEED —

— ’/ /
AMI_CHECK,_BAHK —|

STOP_GETEVENT —
START_GETEVEHT —| /

APF_RECEIVE —
1S5 _START _WRITE —
155_EWD_READ —|
1S8_START BEAD —

1S8_SERV_TH —|

1S5_MASTER_OUT —

1S5_MASTER_IN —

APP_SENWT —!
46800 astoe - 52800 54800 set0s
time{ms)
Servers: # hpss3_nersc_gov
Time Window {ms) Q -~ Analysis SEIEE FEvEE)

10090 i AUuto—speed -
ekt @ Speed G

ﬂ_j,_ﬂ:_j,:'_j 46;00 %w =4

Netl_ogger |

Current Work: JAMM ceecerd]

« Java Agents for monitoring and management
(JAMM)

— Java RMI-based agents are used to start up
NetLogger versions of system tools

e netstat, vmstat, uptime, xntpdc, ping, netperf,
etc.

 Monitoring can be based on application use

— e.g.: only do monitoring while a client is
connected to a server

 For more info see: http://www-didc.Ibl.gov/JAMM/

NetLogger

Current Work ceece?]

 NetLogger enhancements:

— adding Globus security

* plan to use GlobuslO for sending NetLogger
messages to netlogd

— binary transmission/storage format

 Deployment plan
— SNMP-based monitoring goes on all the time

— application/host monitoring triggered by the
application/user

| NetLogger |

Open Issues reree) m

Log collection/archive service

— netlogd to a file not adequate, need to send
monitoring data to some kind of database (LDAP?)

multicast ability?

— Need to simultaneously send to archive and to one
or more nlv session

how to correlate archived monitoring data with network
configuration data? (i.e.: traceroute)

how to map application traffic to a specific
switch/router port?

Integration with other tools
— Pablo, NWS, Surveyor, etc.

NetLogger |

Getting NetLogger cerre) ’\‘

e Source code and some precompiled binaries are
available at:

— http://www-didc.lbl.gov/NetLogger

e Solaris, Linux, and Irix versions of nlv are
currently supported

| Netl_ogger |

